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A finite-difference simuiation method for breaking water waves is developed. The 
Navier-Stokes equations in finite-difference form are solved by time-marching scheme in an 
Sexible rectangular staggered mesh system. Ingenious ?echniques are particularly focussed 
on the implementation of the nonlinear free-surface conditions so that overturning and 
impinging waves can he simulated. It is demonstrated that this method is applicable to three 
water wave problems that involve breaking phenomenon, namely, bo-w waves of an advancing 
floating body, a shallow water flow over a bump, and waves on a submergible. The simulated 
results show fairly good resemblance to the actual nonlinear wave motions including overtur- 
ning and breaking of waves, occurrence of impact pressure, and generation of vortices. 
1’ 1986 Academic Press. Inc. 
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Wave breaking is one of the most important phenomena in the fields of coastal 
and offshore engineering as well as naval architecture, since it renders noticeable 
influences. The wave energy concentrated on the breaking wave front may destroy 
offshore structures and give disastrous influences on harbors. i’donlinear ship waves 
generated in the vicinity of a hull are deformed and their energy are dissipated into 
momentum loss far behind by the influences of breaking motion. 

Despite the importance of wave breaking in many engineering problems the num- 
ber of theoretical research work seems to be very limited presumabiy owing to the 
highly nonlinear features of the phenomenon. Longuet-Higgins and Cokelet [ 1 I j 
developed a boundary element method to explain steep waves and Vinje and 
1221 applied a similar method to the problem of wave impact load caused by 
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breaking waves. However, a boundary element method seems to contain substantial 
shortcomings for the explanation of the wave motion after the stage of overturning. 
The stage of overturning is only the beginning of the nonlinear behaviors of break- 
ing waves, and subsequent stages of the generation of wave impact load and vor- 
tices, which are full of nonlinear features, are of importance from both scientific and 
engineering viewpoints. Prior to these works Harlow and Amsden [4] 
demonstrated that a finite-difference method is useful for the simulation of breaking 
waves in a shallow water region, although the details of the simulation techniques 
for the breaking motion are not well described. In general, the versatility of a linite- 
difference method is supposed to be superior to a boundary element method and it 
seems to have the potential capability of explaining the complicated wave breaking 
phenomenon. However, although the wide versatility of a finite-difference method 
in hydrodynamics is demonstrated by a lot of researchers in many fields in the last 
two .decades, it does not seem to be often the case that it is directly applied to 
engineering problems related with hydrodynamics containing free-surface, wherein 
certain degree of quantitative agreement is required. Advanced studies seem to be 
necessary in order to raise the degree of accuracy in the estimated values which are 
of particular importance in respective practical problems. 

In recent years a MAC-type solution method called TUMMAC method (Tokyo 
University Modified Marker And Cell method) was developed by synthesizing 
various techniques so far developed and developing new techniques that are 
suitable for the water wave problems [17, 18, 191. One of the objectives of the 
researches with the TUMMAC method has been to make a preparatory study for 
the development of an effective numerical tool for particular engineering problems 
related with water wave dynamics. In this paper a new version of the TUMMAC 
method called TUMMAC-Vbk is developed, which is specially designed so as to 
cope with wave breaking motions. It is applied to three breaking wave problems, 
namely, the problem of breaking bow waves of an advancing floating body, that of 
a shallow water flow over an isolated obstacle, and that of breaking incident waves 
on a shallowly submerged body. Sketches of the problems are shown in Fig. 1. 

The first problem of bow waves of an advancing floating body is selected for the 
aim of elucidating nonlinear ship wave mechanics. The nonlinear characteristics of 
bow waves of a ship have been investigated by many researchers. Taneda and 
Amamoto [21] visualized so-called necklace vortices caused by jump-like waves 
around a bow. Baba [ 11 recognized breaking of waves. Miyata et al. [ 13, 14, 15, 
161 clarified the distinctive characteristics of bow waves through extensive 
experiments and called the wave free-surface shock wave (FSSW). These 
experimental works indicate that ship waves have not only dispersive property but 
also dissipative property. Dagan and Tulin [3] theoretically studied a 2-dimen- 
sional bow wave and proposed three types of bow flow, that is, smooth free-surface, 
breaking wave, and jet. They explained the two types except for breaking wave by 
use of theoretical modelling. Althouth breaking of waves plays an important role in 
the complicated bow wave problem, it has been left to be pursued, mostly because 
it is very difficult for potential theories to cope with this phenomenon. 
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FIG. 1. Definition sketch for three wave breaking problems: (a) advancing floating body problem: 
(b) bump probiem; (c) submergible in wave probiem. 

The generation of steep nonlinear ship waves is successfully simulated using 
another version of the TUMMAC method by Miyata et al. [ 17, IS]. The simulated 
wave height contour maps show good quantitative agreement with the measured 
results in case breaking motion is not significant. However, the most noniinear 
phenomenon of wave breaking, which is known to be infiuential to wave generation 
and consequently to wave resistance, is not taken into account in this version, since 
the treatment of Sdimensional breaking motion seems to give rise to serious dif- 
ficulties. 

The purpose of the study on the first problem is to obtain more comprehensive 
understanding of the nonlinear wave mechanism of advancing floating bodies 
including ships through numerical simulation of steep wave generation, wave 
breaking, and vortex generation in a simplified 2-dimensional case. 

‘The second problem is associated with flow separation, since an obstacle in a 
uniform shallow water flow generates a vertical flow of Large scale behind it. 
the Froude number is of significant magnitude, steep waves are generate 
free-surface and they may interact with the separating flow. Similar problems were 
already worked out, for instance, by Houghton and Kasahara [S] and by Lamb 
and Britter [IO]. However, the theoretical parts of these previous works are 
on either simplification of the governing equations, neglect of nonlinear bou 
conditions, or assumption of hydrostatic pressure distribution. 

The present numerical study on the second problem is supposed to eluci 
some properties of a shallow water flow with both wave breaking and flow 
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separation and it will lead to fruitful understanding of the flow around a stern of a 
ship. 

In the third problem regular incident waves generated by a numerical wavemaker 
interact with a shallowly submerged body: Since the estimation of wave-induced 
forces on submerged bodies has been of particular importance for the design of 
offshore structure, a number of research works have been focussed on this problem, 
for instance, theoretical and experimental studies by Kyozuka [9] and by Inoue 
and Kyozuka [6] on a simplified 2-dimensional problem similar to the present 
study. However, the steep variation of the forces due to the decrease of sub- 
mergence of a body is not interpreted, since they are based on potential theories. 
The present study will visualize the nonlinear behavior of waves on the shallowly 
submerged body including wave breaking and will elucidate the mechanism of 
generating nonlinear drag and lift of a submergible. 

The numerical solution method is described in Section 2 and the computational 
results of the three problems are presented and discussed in Sections 3 to 5, respec- 
tively. Brief concluding remarks are mentioned in Section 6. 

2. NUMERICAL SIMULATION METHOD 

2.1. Governing Equations and Computational Algorithm 

The governing equations for an incompressible 2-dimensional flow are the 
following: 

Continuity equation 

Momentum Equations 

au a(u’) + d(uw) 
at+- -= Lg+v($+!$) 

ax aZ 

aw quw) + qw') 
dt+dx 

-= -f~+v(~+~)+g. aZ 

(1) 

(2) 

In these equations u and w are velocities in the Cartesian coordinate system, in 
which x is the horizontal axis and z vertical, p is the density, v is the kinematic 
viscocity of water, P is the pressure and g is the gravitational acceleration. 

The fundamental concept of the solution procedure is similar to one proposed by 
Welch, Harlow, Shannon, and Daly [23]. A staggered mesh system with rec- 
tangular cells of equal spacing is employed for the discretization, and Eqs. (2) are 
represented in finite-difference form by forward differencing in time and centered 



BREAKING WAVES, 18% 

differencing in space for the diffusive terms, as follows. The differe~~~ng of the con- 
vective terms denoted UC and WC are described afterward. 

where 

r ,+ 1,:2,k = u,, 112~~ -At. UC,, L2.k 

+v.At 
i 

u;+ 3/2,k - 2u,, l/2./; + M;& 1:2,k 

AX2 

+ 
ui+ l;‘Z,k+ 1 - 2ur+ li2,k i u,+ 1:‘2,k- 1 ’ 

AZ’ 

(3) 

141 

i2.k + 1;2 f lh’i,k i 1:2 - At wcr.k + I .2 

+ v At 

i 

““it 1.k + I/2 ~ 2Wi,k + IQ + )‘;, I,k+ l/2 

Ax2 

+ 
Wi,k + 312 - 2w I,k + l/2 + Wi,k - 312 

AZ2 

t g.At. 

The parameters At, Ax, AZ are time increment and dimensions of a ceil in (x, z)- 
coordinate direction, 4 is pressure divided by p. Subscripts are used for the cell 
location and superscripts for the time level. Variables with superscript (IZ + 1) are 
related to the (M + 1) th time step and variables lacking a superscript are evaluated 
at the n th step. Through (3) and (4) velocities at the (~2 -t I )th time step are derived 
when the pressure and velocities at the n th time step are given. 

By taking the divergence of a cell and letting the divergence of the (n + 1 jth time 
step zero the Poisson equation for pressure is derived as 

d&k = ’ 
i 

di+ l,k 

2( l/Ax2 + ~/AZ’) 
+diGI.k+ $i,k+1 +di,k-I 

AX AZ2 is1 

where 

Ri k _ <i+ lj2.k - <, - 1/2,k + ci.k t 112 - ci.k -- 112 

At.Ax Ai.Az 

The time-evolutional equations (3) and the Poisson equation (5) are the prin- 
cipal equations to be numerically solved. Through the computational procedure 
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FIG. 2. Block diagram of the simulation method TUMMAC-Vbk. 

shown in Fig. 2, they are solved as an initial-value boundary-value problem. The 
solution is advanced in time by a series of repeated time steps. In each time step the 
Poisson equation is iteratively solved by the successive over-relaxation method 
under given boundary conditions, and then new velocities are derived from Eq. (3). 
A new source term (Ri,k) for the Poisson equation (5) is calculated from the new 
velocity field and the cycle is repeated. 

2.2. Finite-Differencing of Convective Terms 

The finite-differencing scheme for the convective terms must be carefully chosen, 
since it often renders decisive influences on the result. Two kinds of differencing 
method are employed, namely, the donor-cell (second-order upstream) method, 
and the third-order upstream differencing method proposed by Kawamura and 
Kuwahara [S]. Although the convective terms in the conservative form shown in 
Eqs. (2) are used for the differencing by the former method, those in the non-con- 
servative form are used for the latter method. The first x-directional convective term 
i3(u2)/8x in UC, for instance, is written as follows: 
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Donor-cell method 

185 

+ 1%+1,2 +“i+3/2 / f”!+l:2 -“,+3,2) 

Third-order upstream method 

= ui+ I:2C”i+5/2 -2u;+3/2 + 9u,+ 112 
r+ l/2 

-lOu,_ ,,2 +2u,-,,,)/6 Ax when 2430 

= ‘it l/2( -2ui+5/2 + 10Ui+3,2 - 9&+ 1/2 

+ 2u,.. ,,2 - u;-,,,)/6 Ax when u<O. 

In the above equations the subscript k that denotes the vertical location is dro 
for simplicity. 

It is advocated that the third-order upstream method does not have the second- 
order truncation error that may give rise to numerical dissipation and that the 
fourth-derivative error plays the role of a turbulence model, see Kawamura and 
Kuwahara [S]. Although the universal availability of this turbulence modehing is 
not verified, the simulated results of a 2-dimensional flow around a circular cylinder 
in a wide range of Reynolds number seem to show good agreement with experi 
tal results showing the well-known fact that drag coefficient of a circular cylinder 
suddenly decreases when the Reynolds number exceeds I@. It seems to be 
worthwhile to examine the practical availability of this differencing scheme by 
applying to the last two problems in which the viscous effect is of importance or 
high resolution is required, while t he donor-cell method is used in the bow wave 
problem. 

The computational domain is divided into cells of w 
Ax and AZ, respectively, and all the cells are flagged. Th 

), an air cell (flagged A), a free-surface ce 
), or an empty cell (flagged E) as shown i 
free-surface and body boundary conditions are to be fulfilled. The 

free-surface configuration is represented by a succession of line segments, of which 
end-points are on the lines that constitute the underlying rectangular mesh system, 
and an S-cell is defined as a cell that contains a segment of free-surface. 

Each velocity and pressure are also flagged. Velocity and pressure that 
fluid domain and are computed by the normal procedure are flagged 1. 
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F: full cell B : boundary cell 

E: empty cell 85: boundary free-surface cell 

FIG. 3. Cell flagging. 

they are flagged 0. For the determination whether the pressure and velocity points 
are located inside of the fluid or not, a pseudo-vector of a free-surface segment is 
used. The use of segment instead of marker particle is advantageous in this flagging 
procedure. 

2.4. Free-Surface Condition 

The dynamic and kinematic free surface conditions are written as 

lp=&)=o on z=h (8) 

D(h-z) =. on z=h 
Dt 

where h is wave height and do is the atmospheric pressure divided by the density of 
water. In a strict sense the surface tension and the viscous stress on the free-surface 
must be taken into account. However, they are neglected in the present com- 
putational method by the following two reasons. One reason is that they are not 
supposed to play a significant role in the motions of gravity waves generated by a 
floating body advancing at the speed greater than 0.5 m/s or those of regular waves 
of 1.5 m wavelength generated by a wavemaker. The other reason is that the viscous 
stress forms an extremely thin shear layer on the free-surface which cannot be 
resolved in the present rectangular cell system. In the author’s previous study on 
non-breaking 2-dimensional bow and stern waves [19] this viscous stress on the 
free-surface was incorporated in the procedure of implementing the free-surface con- 
ditions. However, the viscous stress was evaluated with over exaggerated magnitude 
due to the coarse cell system and it distorted the solution. 

The dynamic condition expressed by Eq. (8) is fulfilled in the procedure of 
pressure computation described below, and the kinematic condition expressed by 
Eq. (9) is fulfilled by the Lagrangian movement of the segments that form the free- 
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---+X c---c old segment 

8---d new segment 

FIG. 4. Movement of free-surface segments. 

surface configuration. The two end-points of each segment are located on the 
underlying lines of the rectangular cell system. Since their coordinates are define 
two dimensions, this use of segments enables the expression of a free-surface con- 
figuration that is a multi-valued function of x coordinate, which is necessary in case 
overturning of a wave occurs (see Fig. 3). 

The movement of the free-surface segments is illustrated in Fig. 4. The end-points 
of the segments (white circle) are moved in the following Lagrangian manner like 
the marker particles of the MAC method (Welch et al. [23])1 

x n+t=xn+At.u 

Z n + I - -,‘I + At . )$a, -b 
(I@) 

ere, (-‘in, zn ) is the location of the end points of the old segment (white circle) and 
the new segment (in dashed line) is temporarily determined by (x”+ ‘: z”+ ’ p. Then, 
the new end-points (black circle) are determined from the crossings of the tem- 
porary segments with the underlying mesh lines. 

” 
A 

0 normally computed 

e extrapolated 

FIG. 5. Velocity extrapolation 
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Z 
A 

0 normally computed 

0 extrapolated at the 1st step 

A extrapolated at the 2nd step 

FIG. 6. Velocity extrapolation procedure on the free-surface (for the case of velocity u); numbers 
indicate the extrapolating method shown in Fig. 5. 

The velocity vector (u, W) for the movement of the end-points is given by linear 
interpolation from the neighboring velocities. Therefore, the velocities outside the 
fluid region (above the free-surface) must be extrapolated in advance. Each com- 
ponent of velocity vector outside the free surface (flagged 0) is determined from one 
or two neighboring velocities in the fluid (flagged 1). As seen in Fig. 5, ten cases of 
extrapolation are considered for one velocity flagged 0 (black circle). In the cases 1 
and 2 of Fig. 5, the mean of the two values is given to the black circle and in the 
cases 3,4, 5, and 6, the linearly interpolated value is given as 

u=(dz~ui-l + dx ’ uk- ,)/(dx + h). (11) 

where ui-r corresponds to the white circle on the left and ukPl to the other white 
circle at the bottom of the case 3 of Fig. 5. In the cases 7 to 10 the same value with 
the white circle is given. The priority of the cases is in the order of the number of 

l------x 0 normally computed pressure 

. atmospheric pressure 

FIG. 7. Schematic sketch for the pressure computation by “irregular stars.” 
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FIG. 8. Effect of cell size on the propagation of a solitary wave. 

cases. This extrapolating procedure is performed along the free-surface con- 
figuration for two or three times as shown in Fig. 6, in which the numbers in the 
figure denote the cases of Fig. 5. The extrapolated velocity is also used in the com- 
putation of convective terms. 

The dynamic free-surface condition of Eq. (8) is satisfied in the solution 
procedure of the Poisson equation (5). In this procedure the successive 
overrelaxation method and the formula of “irregular stars” by Chan and Street [a] 
shown below are employed: 

As shown in Fig. 7, q is the leg-length of “irregular stars,” that is, the distance 
between pressure points near the free-surface. The atmospheric pressure is denoted 
cbo, and d& A2 are pressure at the ends of the legs of qX2 and yz,, respectively, in 

1-x (a) (b) 

FIG. 9. Schematic sketch for the treatment of overturning wave front 
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Eq. (12). When all q accord with Ax or AZ, Eq. (12) becomes a centered-differencing 
representation of the Poisson equation. 

The appropriateness of the above-mentioned free-surface treatment is first 
examined by a most simple example of a propagating solitary wave. The wave 
profiles are shown in Fig. 8, which shows that the numerical dissipation is suf- 
ficiently reduced when the cell length is adequately small. 

On the breaking wave front a particular approximate technique is used. The 
overturning wave front encloses an air region as shown in Fig. 9. In case the air 
region is sufficiently small, that is, approximately smaller than the area of one or 
two cells, it is artificially filled with water of zero-pressure.This is due to the limited 
resolution of the cell system. Free-surface segments are numbered in successive 
order, and if the number of the segment located in the cell, in which another 
segment numbered NSEG is already located, does not exceed NSEG + 10 as seen in 
Fig. 9(a), the end points of the two segments of NSEG and NSEG + 4 are, for 
instance, connected and the hatched area is filled with water. In case the air region 
is not so small and the number of the segment, that falls down into the cell already 
containing a segment numbered NSEG, exceeds NSEG + 10, the enclosed air 
region is considered as the air region of zero pressure. The number 10 is reduced to 
5 in the latter two problems. At the special moment like the case (b) of Fig. 9, the 
pressure in the cell that contains a segment of wave front almost touching the 
forward free-surface segment is calculated using the pressure below in the fluid 
region instead of the atmospheric pressure. This means that the two surfaces are 
assumed to be connected at the instance of Fig. 9(b). The four velocities that 
surround this cell have quite discontinuous values, and the zero-divergence con- 
dition, that is, an incompressibility condition, is seriously violated at the instance of 
collision. This gives a large value to the source term of the Poisson equation for 
pressure (5) and consequently high pressure is computed in this cell to fulfill the 
incompressibility condition. Thus, the impact pressure due to the impinging wave 
front can be approximately simulated, provided the cell size and the time increment 
are both sufficiently small. 

2.5. Body Boundary Condition 

No-slip body boundary conditions are imposed on the body surface and on the 
sea bed. In the case of an advancing floating body of rectangular configuration the 
body boundary is made of sides of cells, on which the no-slip conditions are 
implemented in the same manner with the technique by Welch et al. [23]. On a 
vertical boundary, for instance, the velocities and the pressure on and inside the 
boundary are determined as follows, see Fig. 10, case (a): 

u, =o 

w, = -ww, 
(13) 
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o A normally computed velocity 

0 A extrapolated velocity 

FIG. 10. Schematic sketch for no-slip body boundary conditions. 

Bn the cases of a bump and a submersible another procedure is contrive 
the arbitrary geometry of the body is approximated by a succession of hsae 
segments. As illustrated in Fig. 10, case (b) the inner velocities U2 and 
extrapolated in the following manner so that the velocities on the boundary 
by small black circles are set at zero. 

U, = -U, . ((Ax-e)/e)‘!2 

W, = -WI. ((AZ-f),‘f )1/2. 
(14) 

Another condition to be fulfilled in this boundary cell is the zero-divergence con- 
dition. The successive over-relaxation method for the solution of the 
equation (5) is equivalent to the simultaneous iterative method, in which the con- 
vergence of the pressure is attained when the divergence of a ceil tends to be zero. 
Therefore, the pressure computation by the simultaneous iterative metho 
on the boundary and the proper pressure in the boundary cell is determined satisfy- 
ing the zero-divergence condition with the velocities from Eq. (14). Since a segment 
of a body boundary bisects a cell in a variety of ways, the velocity ex~ra~o~atio~ by 
Eq. (14) is modified according to the cases. 

i=l 2 3 

0 A normally computed velocity 

e A given velocity 

FIG. 11. Velocity and pressure points at the inflow boundary 

581/65/l-13 
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2.6. Injlow Boundary Condition 

A uniform flow or waves are generated by giving proper velocities at the inflow 
boundary. The velocity u in black circle and w in black triangle in Fig. 11 are given, 
and the pressure computation is made from the line of i= 1. The pressure at i= I is 
computed from the pressure at i = 2 and neighboring velocities through Eq. (3). 

In the two problems in which the obstacle is in a uniform stream, the inflow 
velocity is gradually increased for several hundred time steps and the steady state is 
reached after the flow acceleration is ceased. In the problem in which the inflow 
boundary works as a wavemaker the velocities are given by the following equations 
for sinusoidal waves in finite water depth: 

U= h,, . cr. cosh{K(D +z,)}/sinh(K. D) 

xsin{o.N.dt-K.x,} 

w = h, . cr. sinh{K(D +zk + 4z/2)}/sinh(K. D) 

xcos{o2vYl-Iqx, 4x/2)}. 

(15) 

Here, ho is the wave amplitude, c is angular frequency of the wave, K is wave num- 
ber, D is water depth, N is number of time step, and (x,, zk) is the location of the 
inflow boundary. 

2.7. Other Conditions 

The computational domain is surrounded by two other boundaries, namely, the 
outflow boundary and the bottom boundary when a sea bed is not present. At the 
outflow boundary the velocities are set equal to the inner computed values and the 
pressure is extrapolated by the relation of Eq. (3). This simple open boundary con- 
dition of zero-normal-gradient of velocity works well, which is partly attributable to 
the transportive property of the upstream differencing. In the last problem of a 
floating body in waves the extension of the computational domain to the downwave 
direction by 0.5 m did not give noticeable influence on the motions shown in the 
figures in Section 5. At the bottom boundary the hydrostatic pressure is given but 
the velocities are determined by the zero-divergence condition. In the cases of deep 
water in which a sea bed is not present, the depth of water is taken to be sufficiently 
large. 

Well-known stability conditions are considered. The time increment and cell 
dimensions should satisfy the Courant condition. The relaxation factor of the suc- 
cessive over-relaxation method for the solution of the Poisson equation should not 
exceed 2.0. It is set at 1.1 or 1.5 except for the boundary cell in which the factor 0.8 
is used. 

2.8. Consideration of Appropriateness and Accuracy 

We will be convinced of the fundamental appropriateness of the present finite-dif- 
ference method, if the agreement of its solution with a well-known analytical one is 
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demonstrated for a simple problem. However, this is not so easy as is expected, 
since nonlinear features of a flow inevitably appear especially when a bo 
situated in a uniform stream or waves, partly due to the nonlinear properties of the 
Navier-Stokes equations. For example, waves analytically generated by a point 
doublet located in a uniform stream cannot be compared with those numericafly 
generated by a circular cylinder, since the latter waves are influenced by the viscous 
fluid motion around the cylinder. 

However, the problem becomes much simpler, if a body is removed and only 
waves are present. The propagation of a solitary wave is computed by the present 
method as shown in Fig. 8, which shows that a solitary wave propagates, keeping 
the steady wave profile even if a sufficiently fine cell system is used. It seems to be 
demonstrated that in spite of the complicated procedures on the boundaries t 
present method is capable of simulating wave motions with appropriate degree 
accuracy. 

Since a lot of approximation is made in the finite-difference representation of the 
equations and in the discrete treatments of the boundary conditions, the cell dimen- 
sions must be as small as possible. Another test o e effect of cell size is present in 
[S] for the problem of 3-dimensional nonlinear s waves. It is demonstrated that 
the simulated ship waves by the TUMMAC me d show fairly good agreement 
with the measured ones when the length of a cell is smaller than one percent of ship 
length. 

The appropriateness and the accuracy of the present method will be examined for 
the three problems that contain more nonlinear aspects of complicated flows in t 
fohowing sections. 

3. Bow WAVE BREAKING OF AN ADVANCING FLOATING 

3.1. Condition of Computation 

The computational domain is 2.00 m long and 0.55 m high as is shown in Fig. 12, 
and the water depth on the undisturbed condition is 0.40 m. The length and immer- 
sion (draft d) of the floating body are 0.20 m and 0.10 m, respectively. Since the 
length and height of a cell, that is, dx and LIZ, are 10 mm and 5 mm, respectively, 
the fluid region is divided into 15600 cells at the initial rest condition, and it varies 
according to the deformation of the free-surface. 

Two Froude numbers based on draft (Fd) are chosen for the computation, that is 
1.25 (1.237 m/s) and 1.50 (1.485 m/s). These high Froude numbers correspond to 
service speeds of a large marchant ship on a lightly loaded condition. For exa 
the Fd of a bulk carrier advancing at 15 knots is 1.25 when its draft d is 4.0 m. 
From the requirement of the stability consideration the dimensionless time 
increment At’ U/d is set at 0.02 where U is the speed of advance, namely the flow 
speed at infinity. Therefore the time increment is 1.62 and 1.35 millisecond, respec- 
tively. Since the flow acceleration is set at about 8% of the gravitational 
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FIG. 12. Computational domain for the advancing floating body problem. 

acceleration, the velocities in the fluid domain are accelerated from the rest con- 
dition for 978 and 1404 time steps for respective cases of Froude number. The 
acceleration is linearly increased from zero and linearly decreased to zero at the 
start and the end of the accelerating stage so that the steady state is smoothly 
reached. The actual kinematic viscosity of fresh water 1.14 x lop6 m’js is used. 

3.2. Computed Results at Two Froude Numbers 

The velocity vector field in the computational domain is shown in Fig. 12. The 
free-surface is elevated in front of the body and depressed behind the body as expec- 
ted. Although it seems to be very interesting to investigate into the stern wave that 
is supposed to be intimately related with the vertical recirculating flow behind the 
body, our interest in this section is restricted to the bow wave that does not receive 
serious influences from the viscous flow. 

The time-marching simulation at Fd= 1.25 explains the nonlinear evolution of a 
breaking bow wave. With the acceleration of the flow the wave front of the first 
bow wave begins to overturn with forward-oriented velocity vectors, it touches the 
forward surface below, consequently making a blunt wave profile in which an 
intense vertical motion is generated, and then the second wave front becomes 
protrudent at a relatively lower height. This process is repeated until the forward 
movement of the wave front is ceased when it reaches around x = -0.60 m. At this 
Froude number a plunging breaker occurs at the end of the accelerating stage, but 
after the steady speed of advance is reached the breaking motion is similar to the 
spilling type as seen in Fig. 13. The breaking motion, which is a kind of flow 
separation, generates vorticity of anti-clockwise rotation. The successively generated 
vortices are spread and a noticeable vertical layer is formed near the free-surface. It 
extends from the wave front to the vicinity of the forward wall of the body. 

The contour maps of dimensional velocity components U, w and the pressure due 
to wave motion divided by the density (4 = P/p) are shown in Fig. 14 for the 
instance of T= 2.327 s. The hydrostatic pressure is excluded. The forward creeping 
motion of the breaker that successively occurs at the wave front produces a 
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FIG. 13. Computed velocity vector field at Fd= 1.25: (a) T=2.133 s (1320th time step): (b) 
T= 2.327 s (1440th time step). 

remarkable horizontal shear flow beneath the free-surface. he contours of tt’ are 
made complicated by the successive generation of vortices near the free-surface. 
Since impact pressure load is generated at the wave front when the ove~t~r~~~~ 
wave front touches the forward surface below, the pressure distribution is 
remarkably deformed. 

The time-development of the vorticity contour is shown in Fig. 15, whi 
that vorticity is generated by the breaking motion at the wave front, and 
successive breaking motions extend the region of high vorticity to the u 
Simultaneously the vertical region is diffused backward in the proximity of the 
body; and consequently a long-stretched vertical layer is formed near the free-sur- 
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FIG. 14. Contour maps of velocity u (top), w (middle), and pressure 4 (bottom) at Fd= 1.25, 
T= 2.327 s (1440th time step). Positive values are contoured by solid isopleths and negative values by 
dashed contours. The contour interval is 0.1 m/s, 0.1 m/s, and 0.05 m2/s2, respectively. 

face. In the stagnant region near the body the vertical region extends downward 
with small strength. 

At a higher Froude number of Fd= 1.50 the plunging breakers of the nonlinear 
bow waves show more violent appearance. An example of the time sequence of the 
wave profile and velocity vector field is shown in Fig. 16, in which the interval is 40 
time steps (0.054 s) and hence the figures illustrate the breaking motion of the 
period of 0.108 s. The greater wave energy due to the higher Froude number makes 
the motion more dynamic, involving plunging motions with a trapped air region. 
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FIG. 15. Vorticity contours in the bow wave field at Fd= 1.25. Positive values indicate antic!ockwise 
vorticity magnitude. The contour interval is 10/s; T= 1.939, 2.133, and 2.327 s (!2QQ, 1320, and 1440th 
tune steps). 

The velocity field in the plunging wave front shows that large downward velocities 
are present immediately before it touches the forward face of the wave below, which 
is attributable to the higher absolute value of wave height. This downward flow of 
the falling water pushes the nearly horizontal surface below and a very corn 
motion is generated here. The falling water flow is forced to be directed both 
forward and backward by the collision with the almost uniform free-surface flow 
below, the free-surface below is also deformed by the ~nsta~ta~eon$ touch sf the 
faalhng water, and it makes an abrupt elevation resuhing in the mixture of the com- 
plicated motion of the breaking wave front after the stages in Fig. 14. Thus, the vor- 
tical motions generated by breakers are of significant intensity and scale at 
J-d= 1.50. 
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FIG. 16. Computed wave profile and velocity vector field at Fd= 1.50, T= 2.021 s (1500th time step), 
T= 2.074 s (1540th time step), and 7’=2.128 s (1580th time step). 

The contour maps of the velocity components and the pressure at T= 2.155 s are 
shown in Fig. 17. The generation of a very complicated flow-field due to plunging 
breakers influences the overall flow-field of bow wave more remarkably than the 
case of Fd= 1.25. The horizontal shear flow with the steep vertical gradient of u and 
the irregular distribution of w due to the vertical motion are very clearly observed. 
It is noted that the high pressure caused by the collision of the plunging wave front 
onto the free-surface below is significantly great. The vertical pressure distribution 
at this instance is shown in Fig. 18, in which the hydrostatic pressure (gz) is 
excluded. Since the water head of the uniform stream (4 U’) is 1.10 m2/s2, the impact 
pressure due to the simulated plunging breaker is higher than three times the expec- 
ted highest pressure of a non-breaking wave. The high pressure due to plunging 
breakers causes secondary motions with higher complexity. 

3.3. Comparison with Experimental Results and Discussion 

The free-surface appearance of bow waves at three Froude numbers is shown in 
Fig. 19. These pictures are photographed by the grid projection method (see Kanai 
[7]). A grid system of 20 x 20 mm mesh is projected from above onto the water 
surface which is covered with a very thin film of aluminum powder. The qualitative 
indications are that the breaking motion becomes obvious when Fd exceeds 1.0 and 
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FIG. 17. Contour maps of velocity u (top), w (middle), and pressure 4 (bottom) at Ftt= 1.50, 
T= 2.155 s (1600th time step). Positive values are contoured by solid isopleths and negative values by 
dashed contours. The contour interval is 0.1 m/s, 0.1 m/s, and 0.05 m*/s’, respectively. 

that the observed free-surface turbulence at the wave front is related with wave 
breaking. 

Since the simulation at Fd= 1.00 does not show breaking motion (though the 
results are not included in this paper), wave breaking, which has such a large scale 
as to be resolved by the present cell system, is supposed to take place when the 
Froude number exceeds a critical value. The breaking motion is similar to the spil- 
ling type at Fd = 1.25, while it is similar to the plunging type at Fd= 1.50. 
to be very difficult to classify the breaking motion in deep water into three distinct 
types, namely, plunging breaker, deep water bore, and spilling breaker, since the 
type changes by simply increasing the speed of stream. 
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FIG. IS. Vertical distribution of q!~ (P/p), illustrating wave impact load by breaking at Fd= 1.50, 
T=2.155s (1600th time step), x= -0.15m. 

FIG. 19. Free-surface appearance of bow waves: (a) Fd= 1.00; (b) Fd= 1.25; (c) Fd= 1.X). 
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es&s at Three Reynolds Numbers 

Velocity vector fields computed at three Reynolds numbers are compared . 
Fig. 20, in which three separated recirculating regions are observed, namely, t 
largest recirculating region behind the obstacle, the very small one just in front of 
the obstacle both due to viscous effect, and the free-surface separate 
wave breaking. The rotation of the last one has opposite sign. 
viscosity the separated recirculating region is enlarged an 
is located significantly downstream. The scale of the recirculating region behin 
obstacle influences on the neighboring flow-field and ~onse~n~~t~y on the wave 
motion ~nc~nding breaking. Thus the viscous separated flow is supposed to interact 
with the nonlinear free-surface waves, which is intensified when the water depth is 
decreased. 

The simulated wave breaking stages around the state of Fig 20(c) are shown in 
Fig. 21. When about 0.6 s is elapsed from the end of the accelerating stage the first 
overturning motion starts, this overturning motion produces vertical flow by break- 
ing and this cycle is repeated. In this simulated result two cycles are repeated within 
0.3 s, with the protrudent wave front advancing forward. 

Vorticity contour maps at two stages are shown in Fig. 22. Since they are com- 
puted at Re = IO’, excessive attenuation of vorticity due to viscous dissipation is 
not expected. In the viscous separated region the vorticity is most significant on the 
rear shoulder region on the obstacle, and another region of strong vorticity in 

FIG. 21. Simulated breaking stages, Re = 1Q5. 
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opposite sign is generated at the wave front with the evolution of wave breaking. It 
is noted that the strength of the vorticity of anticlockwise rotation by breaking is of 
the same order with that of the viscous separated flow. 

4.3. Comparison with Experimental Results and Discussion 

The overall resemblance of the simulated result to the experimentally visualized 
flow-field shown in Fig. 23 is good. The picture indicates that the separation on the 
surface of the obstacle is retarded by the flow acceleration on the top of the obstacle 
due to the presence of the free-surface, which is also observed in the simulation in 
Fig. 20. 

When another version of the computational program that does not take into 
account the breaking motion is used for the simulation of the present problem, the 
wave profiles at the 500th time step become as illustrated in Fig. 24(a). It is 
obviously noted that the wave profiles are far from realistic with a sharp corner 
when the overturning motion is not permitted. On the contrary, when the breaking 
simulation technique is incorporated in the computational procedure, the wave 
profiles remarkably tend to agree with the measured as shown in Fig. 24(b). Since 
the profile is time-developmental as seen in Fig. 21, the agreement with the 
measured varies with the repetition of the breaking motion. However, the 
agreement of the averaged wave profile with the measured one seems to be 
meaningful, considering the viscous attenuating effect on the free-surface. 

It can be concluded that in this problem a realistic flow-field cannot be attained 
unless the wave breaking motion is properly considered and simultaneously the 
actual kinematic viscosity is used. However, the consideration of the free-surface 
turbulence, the occurrence of water splash and the compression of the trapped air 
that may play a part in the plunging breakers is of importance for better agreement, 
as it was in the bow wave problem. 

FIG. 23. Visualized flow-field at U = 0.5 m/s, D = 25 cm. 
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FIG. 24. (a) Comparison of wave profiles, computed profiles are made from computations without 
breaking simulation. (b) Computed profiles are made from computations with breaking simulation. 

5. BREAKING OF REGULAR INCIDENT WAVES ON 
A SHALLOWLY SUBMERGED BODY 

5.1. Condition of Computation 

An elliptic submerged body, which is 0.60 m long and 0.28 m high, is hor~zo~t~~~y 
placed beneath the free-surface. The computational domain is from 1.0 m upwave of 

581,65/l-14 
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FIG. 25. Velocity vector field at the 860th time step with three submergence, d= 13 cm, 15 cm, and 
20 cm. 
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the center of the body to 1.0 m downwave, and 0.50 m deep. At the left side b 
dary a numerical wavemaker is located and it produces regular waves of 
wave-length is 1.5 m and the amplitude is 0.025 m. Four cases of submergence of 
the body (the depth of the center of body) are chosen, namely 0.13 m, 0.15 m, 
0.20 m, and 0.25 m. 

The length and height of a cell are 10 mm and 5 mm, respectively, and the fluid 
region is divided into about 20,000 cells. The time increment is 0.00326 s. Since the 
wave period is 0.98 s, the computation is continued for about 1200 time st 
that an approximately steady state of waves interacting with the submerged 
attained. The kinematic viscosity is set at 5.7 x lop5 m2/s, which is 50 times larger 
than the actual value. 

5.2. Computed Results at Three Submergence 

Velocity vector fields at three degrees of submergence are compared in Fig. 25 at 
the 860th time step when the wave propagating from left just starts to break. The 
velocities are increased on the submersible and their vertical distribution tends to 
be hydrostatic. By this shallow water effect the waves are remarkably deformed in 
the configuration similar to a bore on the submergible. Since the propagation speed 
of the shallow water bore depends on the depth of water measured from the top of 
the submergible, the phase of the wave crest in the shallower cases is shg 
delayed. It is noted that a vertical motion appears in the downwave region near the 
free-surface, which is most obvious in the shallowest case. 

Contour maps at d= 15 cm are shown in Fig. 26 for two typical stages. The time 
interval is about 0.2. s, and the pressure in kg/m2 excluding the hydrostatic pressure 
is divided by the density of water. The overturning motion of the wave similar to a 
bore becomes obvious at the 860th time step when the wave front approaches the 
shallowest position, and successive breaking motion rs on the downwave side 
of the submergible. It is noted that very high velocity complicated velocity dis- 
tribution are generated on the submergible and that the pressure distribution 
behind the wave front is approximately hydrostatic. 

5.3. Comparison with Experimental Results and Discussion 

The free-surface appearance photographed on the condition of Fig. 26 
(d= 15 cm) is shown in Fig. 27. The formation of a bore on the upwave side of the 
submergible and its breaking on the center of the obstacle are observed, which are 
in good qualitative agreement with the simulation. 

From both the simulation and the experiment a negative drifting force is 
evaluated, which means that the submergible is pushed upwave when its sub- 
mergence is small as shown in Fig. 28. The negative drifting force is explaine 
terms of the wave set-down and set-up phenomena (see Longuet-Higgins [ 121) 
the high pressure generation due to breaking. Since the breaking becomes dominant 
after the wave front passes over the top of the submergible, wave set-down occurs 
on the upwave side and wave set-up on the downwave side and, simultaneously, 
high impact pressure caused by breaking is more significant on the downwave s’ 
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FIG. 26. (a) Contour maps of velocity u (top), w (middle), and pressure qS (bottom) at the 860th 
time step of d = 15 cm, the contour interval is 0.05 m/s, 0.05 m/s, and 0.02 m*/s*, respectively. (b) Con- 
tour maps of velocity at the 920th time step. 
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FIG. 27. Free-surface appearance of breaking wave at d = 15 cm. 

The two phenomena that cause a negative drifting force are approximately included 
in the simulation, since the momentum equation is directly solved. Therefore, as 
seen in Fig. 28, the simulation seems to show successful agreement in the negative 
drifting force. On the other hand, with the increase of submergence to d = 0.25 m or 
deeper, the drifting force tends to be zero. The agreement in the deeply submerged 
case, in which the wave motion is almost linear and can be analytically explained, 
seems to demonstrate the quantitative accuracy of the present method. 

The pressure distribution on the submergible is compared in Fig. 29 at the stage 
that coincides with the former stage in Fig. 26. Considering the error in the 
experiment, the discrepancy at this stage is supposed to be within allowable extent. 
However, the discrepancy becomes greater in the stage in which breaking motion is 
particularly significant, mostly because the generation of high pressure due to 
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FIG. 28. Comparison of measured and computed drifting force made dimensionless with respect to 
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computation, 860-th step 

FIG. 29. Comparison of computed and measured pressure distribution on the body surEace 

breaking is not thoroughly simulated in the computation, although the high 
velocity of water particles and the phase delay of the wave front are well simulated 
as seen in Fags. 25 and 26. 

6. CONCLUDING REMARKS 

The 2-dimensional simulation method for breaking water waves is proved to be 
successful for the investigation into the mechanism of nonlinear free-surface 
motions, and the versatility of the finite-difference method is exemplifie 
three problems. However, further efforts should be devoted to the impro 
the degree of accuracy and for the proper consideration of highly nonlinear motions 
including free-surface turbulence, air-entrainment, an plash. 

The computations were executed by the HITAC 2833 system of the Com- 
puter Centre of the University of Tokyo. This research is supported partly by the 
Grant-in-Aid for Cooperative Research of the Ministry of Education, Science, and 
Culture and partly by the LINEC group of shipbuilders. The author is indebted to 
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wa, T. Sate, M. Shirai, F. Ishibashi, 

collaborations and discussions and also M. Matsumsto a 
careful typewriting the manuscript. 
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